그는 사람이 선물 것은 것 같아요. 그는 것 같아 같아 수상에서 방법을 받았는 것 것 같아. 한 것 같아. 것 같아. 것

報 文

小特集・最近の地盤調査手法-10

# 地下レーダ法の測定原理と適用事例

Underground Penetrating Radar—Principle and its Application to Field Survey—

森 充 広<sup>†</sup> 長 束 勇<sup>††</sup> 畑 山 元 晴<sup>††</sup> (Mitsuhiro Mori) (Isamu NATSUKA) (Motoharu HATAKEYAMA)

## L はじめに

近年,公共事業におけるコスト縮減が重要な課題となっ ている。特に,国営事業等が完了し,数十年を経過した 多くの地区においては,老朽化した施設の改修が喫緊の 課題となっている。これらのコストを縮減するためには, 補修の必要な箇所を迅速に発見,特定し,部分的な改修 で対処できるよう処置することが重要である。しかし, たとえばパイプラインや溜池からの漏水などのように, その異常箇所の特定が難しい場合も多く,やむをえず全 面的に開削し、改修するケースも多い。

こうした異常箇所を非破壊で探査できる手法の一つと して,船舶,航空機などで利用されているレーダの原理 を地中に適用した地下レーダ法がある。地下レーダ法と は、地中に超短波(VHF)から極超短波(UHF)の領域 の高周波電磁波を発射し、この電磁波の反射・屈折・透 過などの物理現象を測定することによって地下構造や異 常物の位置を調査する物理探査法である<sup>1)</sup>。

本報では、地下レーダ法の原理と測定方法を述べると ともに、コンクリート構造物のポーラス箇所検出、農地 の陥没危険箇所予測に適用した事例を紹介する。

## II. 地下レーダ法の概要

## 1. 地下レーダ法の発達史

電磁波によって地下構造を探査しようという着想は古 くからあり、1910年前後のドイツの特許に電磁波によ る埋設物探査に関するものがみられる。その後、アメリ カを中心に研究が進められてきたが、本格的な研究は Cookが行った氷雪厚の測定に始まった<sup>20</sup>。当初は岩塩 鉱山の調査、石炭鉱山の調査など、主に資源開発を行う ための探査法としてレーダが用いられた。日本において も1971年頃から研究が行われ、地層・土層構造の調査、 路面下の空洞・埋設管の探査、あるいは埋蔵文化財の調 査に利用されてきた。近年ではトンネル覆工裏の変状や

\*\* 農業工学研究所

農土誌 67 (11)

岩盤内の亀裂,破砕帯の分布状況あるいは断層の調査な どにも適用されている。電磁波を放射する装置(アンテ ナ)の開発も進み,ボーリング孔を利用して地下深部の 探査を行うボアホールレーダなども実用化されつつある。

## 2. 測定原理

地下レーダ法では、アンテナと呼ばれる装置から地中 にパルス状の電磁波を周期的に放射し、その電磁波が地 中のどこで反射するかを測定する。地下レーダ法による 測定方法の概略を図-1に示す。基本的には、次の4ス テップを連続することにより探査が行われる。

- ① アンテナからパルス電磁波が発射される。
- ② 電磁波は減衰しながら地中を進行し、異常箇所の 上面に到達する。
- ③ 異常箇所の上面に到達すると、一部は反射波として地上に戻ってくるが、一部はさらに透過し、異常箇所内を減衰しながら進行する。
- ④ 異常箇所上面で反射した電磁波がアンテナに到達 する。異常箇所下面に到達した透過波は、さらに下



図-1 地下レーダによる探査の概要図



1215

<sup>†</sup> 東北農政局郡山土地改良建設事業所

方へ透過する電磁波と,再び地表へ向かう反射波と に分かれる。

地下レーダ探査では,異常箇所の上面,下面で反射し た電磁波がアンテナに戻ってくるために、ある大きさを もった異常箇所の場合,多重反射という現象が見られる。 したがって、地下レーダ探査画像の解釈には、この点に 留意する必要がある。

あるパルス波が発射されてから地中の異常箇所で反射 し、再びアンテナに戻ってくるまでの時間を往復反射走 時といい, 単位は一般に ns (1 ns = 10<sup>-9</sup> sec) で表示す る。地下レーダの画像として表示される縦軸は、往復反 射走時で表される場合が多い。

異常箇所までの深度をD,地下レーダの探査画像で検 出される異常箇所に対する往復反射走時をtとすると, この媒質中を伝わる電磁波伝播速度は次式で求められる。

$$V = \frac{2D}{t} \qquad \cdots (1)$$

したがって,異常箇所までの距離Dを求めるために は、その直上に存在する媒質中を伝わる電磁波伝播速度 Vを知る必要がある。地中を電磁波が進行する速度は、 その媒質の電気的性質、すなわち透磁率と比誘電率によっ て次式で表される。

$$V = \frac{C}{\sqrt{\mu \cdot \varepsilon}} \qquad \cdots (2)$$

ここで, V: 媒質中の電磁波伝播速度, C: 真空中の電 磁波伝播速度, μ:透磁率, ε:媒質の比誘電率である。 土のような非磁性体では、透磁率はほぼ1であるので、 地中の電磁波伝播速度は比誘電率に支配される。したがっ て、その地盤の比誘電率の値もしくは地盤を伝わる電磁 波の伝播速度のいずれかの値が得られていれば,異常箇 所までの深度が特定できることになる。

表-1 に主な物質の比誘電率と、その比抵抗値を挙げる。 この表から,他の物質の比誘電率に比較して,水の比

| T | 比誘電率 $(\varepsilon)$ | 比抵抗 |
|---|----------------------|-----|

表-1 主な物質の比添雪索と比抵抗3)

| 物質     |      | 比誘電率(ε) | 比抵抗値(Ω·m)          |
|--------|------|---------|--------------------|
| 空気     |      | 1       | _                  |
| アスファルト |      | 2.5~3.5 | ~1000              |
| コンクリート |      | 3~9     | ~100               |
| Ŧ      | れき質土 | 9~14    | 100~1,000          |
|        | 砂質土  | 11~18   | 50~400             |
|        | シルト土 | 14~36   | 20~200             |
|        | 粘土   | 25~56   | 1~30               |
| 岩:     | 砂岩   | 9~14    | 200~1,000          |
|        | 石炭岩  | 6~11    | 2,000~10,000       |
| 氷      |      | 3.2     | -                  |
| 水      |      | 81      | _                  |
| 海水     |      | 81      | 5×10 <sup>-2</sup> |

誘電率が81と非常に大きいことが分かる。したがって、 媒質中の電磁波伝播速度は、主にその媒質の水分量に影 響されると言える。逆に水分量と電磁波伝播速度との相 関を調査しておけば、電磁波伝播速度を測定することに よって、地盤の水分量が特定できる。この原理を応用し た水分量の測定方法がいわゆる TDR (Time Domain Reflectmetry) である。

## 3. 探査装置

図−2 に一般的な地下レーダ探査装置のブロック図を 示す<sup>4)</sup>。地下レーダ探査装置は電磁波を放射・受信する アンテナ部と、それらの制御を行う本体、および得られ た結果を表示するディスプレイから成り立っている。ア ンテナ部にはパルス電磁波を送信する部分と、反射波を 受信する部分があり、ほとんどの場合、送受信部は一体 化されている。アンテナ部には、通常アタッチメントと して距離計がセットされており、 探査しながら同時に走 行距離を測定する仕組みになっている。本体部にはコン



Jour. JSIDRE Nov. 1999

ピュータが搭載されており,得られた信号の増幅・処理 を行ってディスプレイに表示する仕組みになっている。 得られた画像は,外部記憶装置(磁気テープ等)に保存 されるか,もしくはビデオ出力を経てビデオテープに録 画される。

アンテナから放射される電磁波の中心周波数はおよそ 数十 MHz~数 GHz である。アンテナは、周波数ごとに 専用のものとなり、探査目的や期待する探査深度に応じ て、数種類のアンテナを使い分ける必要がある。原理的 には、周波数が大きくなると、電磁波の波長が短くなる ために分解能(近接する2つの物体を分離して識別する 能力)が向上する。しかし、地中でのエネルギの減衰が 激しくなるために探査深度は小さくなる。一方、周波数 が小さくなると、より深くまで電磁波が到達するため、 探査深度は深くなる。しかし、波長が長くなるために分 解能が悪くなってくる。このように、地下レーダ探査で は、探査深度と分解能とは相反する要素である。さらに、 探査深度は、地中の比抵抗値にも関連があり、比抵抗値 が高いほど探査深度は大きくなる。これらの相関関係は、 レーダ方程式とよばれる関連式で求めることができる。 仮に、地盤の比誘電率が9、比抵抗値が100Ω・mであ るとすれば、探査深度は周波数 100 MHz で 2.7 m, 500 MHz で 0.55 m, 1 GHz で 0.27 m となる<sup>5)</sup>。

## 4. 測定方法

測定方法には、電磁波の送信受信の距離を一定に保ち ながらアンテナを動かすプロファイル測定と、送信アン テナ(あるいは受信アンテナ)を固定し、もう一方のア ンテナのみを動かすワイドアングル測定の2種類がある (図-3)。なお、このワイドアングル測定では、明瞭な 反射が生ずる地盤境界が水平構造でない場合に電磁波伝 播経路長が一定距離とならず、誤差が生じる。これを防



図-3 プロファイル測定とワイドアングル測定

ぐため,送信アンテナと受信アンテナをある一点から互 いに逆向きに同じ速度で動かす測定も用いられ,これを ワイドアングル測定という場合もある。プロファイル測 定は,主に探査測線直下の反射面の起伏や地質構造を直 接把握する際に用いられるのに対し,ワイドアングル測 定は,地盤中の電磁波伝播速度の分布を求める際に用い られる。

#### 5. 地下レーダ探査の特徴

地下レーダ探査は,他の物理探査法と比較すると,次 のような利点がある。

- 高周波,すなわち波長の短い電磁波を使っているので、分解能が他の物理探査手法と比較すると格段に高い。
- ② アンテナを移動させるだけで、リアルタイムで直下の地下構造が確認できるため、作業性に優れている。
- ③ 非破壊で調査できる。
- ④ ボーリングなどの直接試験結果は、あくまで「点」の情報に過ぎないが、地下レーダ探査では、ある測線上の断面図が連続的に測定できる。

一方,地下レーダ探査の問題点としては,次の点が挙 げられる。

- ① 他の物理探査手法と比較すると、分解能は高いものの、探査深度がかなり小さい。アンテナから発射された電磁波は地表面で約60%は反射されるため、約40%の電磁波しか地中に透過しない<sup>6)</sup>。また、透過した電磁波も地中で大きな減衰を受けるため、アンテナの周波数、対象とする地盤の比誘電率にもよるが、可探深度はおよそ4~5m程度である<sup>7)</sup>。
- ② 得られる画像の解釈が困難である。現時点では、 地下レーダ探査技術を熟知した専門家の判断による ところが大きく、客観的で確実な画像処理方法は確 立されていない。
- ③ 異常箇所の存在は確認できるが、その"正体"を特定することはできない。
- ④ アンテナが走行できるスペースのある箇所でしか 測定できない。特に平面の凹凸が極端に激しい場合 には、平らに均すなどの作業が必要である。

これらの欠点については、種々の改良が試みられてい る。ハード面では、従来のパルス波を送信するのではな く、チャープ信号(振幅が一定で、時間の経過とともに 周波数が低い波から高い波に遷移する連続波)を用いる ことによって、探査深度を数十mに改良した例が報告 されている<sup>8)</sup>。また、画像の解析方法については、トン ネル覆工背面の空洞厚を、±数 cm のオーダーで求める ことができる時系列解析法も確立されている<sup>9)</sup>。

## III. コンクリート構造物のポーラス箇所 検出実験事例

## 1. 実験の目的

近年. 農業用ダムにおいても重力式コンクリートダム の合理化施工法の一つである RCD 工法を用いた施工事 例が見られる。しかし, RCD 工法に用いるコンクリー トは超固練りのため、施工条件によってはポーラス箇所 が生じる可能性がある。このため、現状ではコンクリー トの品質を確認するために多点でコアを採取してチェッ クを行っている。また、多点でコア採取を行っても、そ れはあくまで「点」のデータであり、面としての確認は できていない。コアを採取する前にあらかじめコンクリー トの状態がわかれば、ポーラス箇所があると思われる箇 所でのみ点検を行えばよく、経費的な問題のみならず施 工管理の確実性が飛躍的に向上する。そこで、地下レー ダ法を用いて、こうした完全に空洞ではないものの、密 度や間隙比が異なるポーラス箇所を、探査画像パターン の相違として特定できるか否かを明らかにすることを目 的として実験を行った。

#### 2. 予備実験

(1) 予備実験の概要 現地実験に先立ち,通常のコン クリートと,ポーラスコンクリートでは,地下レーダ探 査画像に相違があるのかどうかを調べるために予備実験 を実施した。図-4 に予備実験モデルの平面図および縦 断図を示す。



図-4 予備実験モデル供試体の平面図・縦断図



写真-1 本体

写真-2 アンテナ

図に示すように、長さ6m,幅1.5m,高さ0.5mの 型枠を作製して中央で二分し、一方に通常の密実なコン クリート(以降,Good 側)、もう一方に疑似ポーラスコ ンクリート(以降,Bad 側)を打設した。Bad 側は高さ 45 cm まで80~150 mmの石英斑岩粗骨材2,884 kgを投 入し、その上に20~40mm石英斑岩粗骨材360 kgを敷 き、表層にはモルタルを打設した。Bad 側の間隙率は 約39%である。電磁波の到達深度を確認するために、 供試体左右端から50 cm、深度50 cmのところに目標と なる直径50 mmの鉄管を埋設した。用いた地下レーダ 探査システムは、G社のデジタル式地下レーダ探査装置 (**写真-1,2**) である。

(2) 予備実験の結果 中心周波数 300 MHz, 500 MHz, 1 GHz の 3 種類のアンテナを用いて,供試体の探査を行っ た。300 MHz のアンテナを用いた探査は供試体を作製 して約1週間後に,500 MHz のアンテナを用いた探査 は約 3.5 カ月後に行った。500 MHz のアンテナを用いた探査 は約 3.5 カ月後に行った。500 MHz のアンテナを用いて 測定した結果を図-5 に示す。この図から明らかなよう に,Good 側と Bad 側に明瞭な探査画像の相違が確認さ れた。Good 側では地表から 3 ns 程度までの反射面しか とらえられなかったのに対し,Bad 側では 10 ns 以上の 反射面をもとらえていた。また,Bad 側ではあらかじ め埋設しておいた鉄管の反射面がとらえられたが, Good 側では検出できなかった。この予備実験の結果か ら,密実なコンクリートと間隙の多いポーラス部分では, 探査画像パターンが全く異なり,地下レーダ法によるポー ラス部分の検出が可能である見通しを得た。

#### 3. 現地実験

(1) 試験ヤードの概要 予備実験の結果を受けて,実際のRCDコンクリートの探査画像はどのようであるの



Jour. JSIDRE Nov. 1999

かを転圧回数を4回と12回とした試験ヤードにおいて 探査し、RCDコンクリート中の電磁波伝播速度、比誘 電率の値を得ることを目的として現地実験を行った。作 製した RCDコンクリート試験ヤードを図-6 に示す。転 圧機械の進入路であるスロープ区間を除いた全長は14 mである。転圧回数を変えた区間は、各レーンとも2.7 mであり、その区間内には、電磁波が到達するかどう かを確認するために、 $\phi$ 150 mmの塩ビ管(VP)をあら かじめ埋設し、コンクリートとの比誘電率に差をつける ために管中を水で満たした。試験ヤードは平成8年11 月に打設し、それ以降、年に1~2回の頻度で探査を実 施し、これらの転圧レーンの探査画像が、経日的にどの ように変化していくかを調査した。

(2) RCDコンクリート探査結果 周波数 500 MHz の アンテナによる探査結果 (平成 10 年 7 月)の一例を図-7 に示す。探査深度を確認する目的で埋設した塩ビ管は, 明瞭に現れた。しかし,管の直上を示すと考えられる反 射面は非常に弱く,その下の多重反射部分が,逆に強い 反射面として現れている。これは,RCDコンクリート と管との比誘電率差よりも,管と管内の水との比誘電率 差が大きいためであると考えられる。

まず,転圧回数の相違による地下レーダ探査画像の相 違については,次の2点のことがいえる。

- 4回転圧区間の探査画像は、12回転圧区間の探査画 像と比較すると、若干乱れている部分もあるが、その 差はほとんど認められない。
- ② 12回転圧レーンに設置した管からの反射が、4回転 圧レーンに設置した管からの反射よりも、やや強い。 ①について、この原因を確認するため、転圧回数4回 および12回の供試体を作製し、一軸圧縮試験を実施し た。その結果、4回転圧のRCDコンクリートと12回転 圧のRCDコンクリートとの間の強度差はほとんどなかっ た。したがって、転圧回数4回でも十分に締め固まって いるため、地下レーダ探査の画像としては差が認められ なかったと考えられる。一方、②については、4回転圧 レーンでは12回転圧レーンよりも電磁波の減衰が大き

いためであると考えられる。すなわち、4回転圧レーン における水分量が多いか、もしくは4回転圧レーンの比 抵抗値が低いことによると推測されるが、確認はできて いない。

(3) RCDコンクリートの比誘電率 管の埋設深度と, 管の直上を示す地下レーダ探査の反射面から, RCDコンクリート中の比誘電率を計算により求めたところ,打 設直後は12~14であったが,経日的に低減し,約780 日経過後では1.5~2.5程度にまで下がった。なお,転圧 回数による差はほとんど認められなかった。

(4) 地下レーダ法によるコンクリート構造物の非破壊 診断への適用可能性について 先に示した図-7 中に「反 射の乱れ」が認められた。この箇所は、数回探査を実施 した際、必ず異常が現れていた。そこで、この部分にお いて、平成10年7月の調査時に、コアサンプリングを 行った。写真-3の下側がそのコアの写真である。

写真上側に示した健全なコアは,異常反射が検出され た地点から約1.2m埋設管寄りの地点でサンプリングし たものである。異常な反射面が認められた地点のコアは, 表層から15cm程度までは通常どおり密実であったが, 15cm~22cmにかけての約7cmの区間に,"粟おこし" 状のポーラス箇所(ジャンカ)が検出された。

反射異常が現れた原因は、ポーラス部分での比誘電率 が、周囲の RCD コンクリートの比誘電率と比較して大 きく異なっているためであると考えられた。検出できた ポーラス部分の間隙率を計算したところ、約34%であっ



**写真-3** 反射の乱れがない部分のコア(上)と 反射異常箇所で採取されたコア(下)



図-7 500 MHz のアンテナを用いた RCD コンクリート試験ヤードの探査結果

た。前述したように、予備実験において明瞭な反射面の 異常を呈した疑似ポーラス部分の間隙率は約39%であっ たことも勘案すれば、間隙率が35%程度あれば、300 MHz あるいは500 MHz の周波数のアンテナを適用する ことによって、こうしたポーラス部分の検出は十分に可 能であることが明らかとなった。

## IV. 地下レーダ法による農地の陥没危険箇 所予測事例

### 1. 探査目的

J地区圃場内において,1998年5月~6月にかけて地 盤の陥没が連続的に発生した。圃場作業面での安全性が 危惧されたため,地盤陥没の原因究明と,今後陥没が起 こりうる箇所を特定することを目的として,地下レーダ 法による調査を実施した。

2. 探査方法

図-8に設定した地下レーダ探査測線を示す。 陥没箇 所がほぼ南北方向の直線上に位置していることと, 圃場 最北端の陥没箇所付近に防空壕が存在していることから, この防空壕が南北方向につながっている可能性が示唆さ れた。そこで, 探査測線は, この南北方向に直交するよ うに東西方向に設定した。最も北側の測線を 0-測線と し, 以後 20 m 間隔を基本として測線を設置した。地上





から陥没が確認される箇所については、測線間隔を密に 設定し、中心周波数 300 MHz のアンテナを用いて危険 箇所の探査を実施した。なお、土地利用の形態は、0-測 線~74-測線上は牧草地、80-測線~120-測線は水田、 130-測線および 160-測線は耕作道(未舗装)である。水 田上は凹凸が激しく、データの取得が困難であった。

#### 3. 探査結果

(1) 300 MHz アンテナによる探査結果の一例 例として, 20-測線における探査結果を図-9に示す。本測線上の探 査結果では、①異常に強い反射面と、②埋設管らしき双 曲線状反射,の2種類がとらえられた。①としては、測 点 26~30m 付近に見られた強い反射面が挙げられる。 そこで、この地点を深さ約3mほど掘削し、地層の確 認を行った。その結果、地下約1.5m付近に、上部の赤 褐色土層と下部の脆弱層との境界面が検出された。この 地点(20-測線30m地点)で別途実施したサウンディン グ結果においても、この脆弱層は地下1.5m~4m程度 に存在していることが確認されている。サウンディング 結果では、脆弱層がこのように地表 1.5 m 付近まで到達 している場所は、この地点以外に認められていない。② に関しては、比較的浅い位置に、ほぼ等間隔で配置して いることから、配水用の埋設管である可能性が高い。し かし、施工当時の図面からは配水管の正確な位置を推定 できなかったため、特定には至っていない。

(2) 異常箇所のマッピング 設置した各測線における 地下レーダ探査画像を解析し、その結果検出された異常 箇所を図-10 にマッピングして示した。図中の凡例は、 地下レーダ探査画像から、次のように3種類に大別した ものである。比較的浅い位置にあり、明瞭な双曲線状の 反射異常地点(埋設管と考えられる)には「×」を、比較 的深い位置にある、明瞭な反射面異常が検出された地点 には灰色のパッチを、連続性のあった反射面が突然途切 れている、あるいは不明瞭ではあるものの反射が乱れた ようにみえる地点には格子状のパッチをつけた。なお、 配水のための埋設管であれば、圃場内に直線的に配置さ れていると考えられるが、地下レーダ探査結果では、 20-測線と60-測線には埋設管と思われる反射面がある





Jour. JSIDRE Nov. 1999



図-10 地下レーダ探査によって検出された異常反射箇所

ものの、その中間に位置する 40-測線では、そのような 反射が認められないなど、その連続性が十分確認できな かった。

次に,陥没と地下レーダ探査における反射異常箇所と の関連について考察する。図-10を見ると,明瞭な反射 異常は圃場のやや西寄りに位置し,不明瞭な反射異常は 圃場のやや東よりに集中している。この結果のみから判 断すると,地下レーダ探査で検出された明瞭な反射異常 箇所は,当初予測された防空壕に起因する陥没危険箇所 推定ライン上に位置している。そこで,まず,空洞が連 続しているのかどうかを検証するため,圃場最北端にあっ た防空壕直上で地下レーダ探査を実施し,防空壕のよう な大きい空洞がどのように画像に現れるかを調査した。 その結果,防空壕の反射は,

① 周囲の反射と比較すると、反射強度が強い。

② 多重反射がおこる。

ということが分かった。したがって、検出された異常反 射はそのような反射画像でないことから、陥没の原因は 防空壕ではないことが確認された。

本調査においては,水平電気探査,スウェーデン式サ ウンディング調査等を併用した結果,陥没箇所は基盤で ある石灰岩層上面の凹地形で発生していることが判明し た。このことから,陥没の発生は,基盤の石灰岩中に存 在した鍾乳洞などの空洞が陥没したことにより,地表付 近の層が石灰岩層に落ち込んだ結果であると推測された。

## V. おわりに

本報では、比較的浅い箇所を非破壊で調査できる地下 レーダ法について、その原理と2つの調査事例について 報告した。地下レーダ法は、非破壊でしかも簡便に探査 できることから、今後、地質概査、施工管理などへの活 用が期待される。しかし、現地の探査においては、探査 深度と分解能との相互関係を把握し、用いるべきアンテ ナの周波数をうまく選択することが重要である。また、 異常箇所を特定することができたとしても、それがどう いう異常なのかは、やはり実際試掘して確認する作業が 必要である。

謝辞:各調査事例においては,関係者各位の多大なるご 協力・ご支援を得ました。また,地下レーダ探査画像の 解釈等においては,農業工学研究所竹内睦雄博士の助言 を頂きました。記してお礼申し上げます。

## 参考文献

1) 竹内睦雄:小講座 地下レーダ,農土誌 59 (9), p. 69

農土誌 67 (11)

72

(1991)

- 2) 利岡徹馬:地下レーダー,第6回物理探査基礎講座講演 会テキスト, pp.251~323 (1990)
- 3) 五十嵐亨:地中探査レーダー,地質と調査 No.1, pp. 41~47 (1988)
- 竹内睦雄,中山熙之,小前隆美,濱田浩正,中山康:農業土木における地下レーダの利用,土地改良測量設計 No. 34, pp. 10~17 (1991)
- 5) 佐藤源之:地中レーダ技術,セメント・コンクリート No. 593, pp. 1~8 (1996)
- 6) 鈴木務:電波による埋設パイプの検知,地質調査 No.2 (1993)
- 7) (社)全国地質調査業協会連合:全国標準積算資料(土質 調査・地質調査)平成10年度改訂步掛版, pp. 155~160 (1998)
- 8) 笠井弘幸,阿部信太郎,鈴木浩一:活断層の地中レーダ 法によるイメージングーその現状と展望,活断層研究 No. 15, pp. 73~86 (1996)
- 9) 大東秀光,及川理人,前川聡,小林剛:地下レーダー記録からコンクリート背面の空洞厚を算出する一方法一時系列解析の適用一,物理探査学会第90回学術講演会論文集,pp.451~454 (1994)

〔1999. 7. 23. 受稿〕



## 略歴

 1969年
 和歌山市に生まれる

 1992年
 京都大学農学部農業工学科卒業

 1994年
 京都大学農学研究科修了

 1994年
 農業工学研究所造構部土木地質研究室研究員

 1999年
 東北農政局郡山土地改良建設事業所

 現在に至る
 1000

## 長束 勇



# 1974年 京都大学農学部卒業,農林省入省 1980年 筑波大学大学院経営・政策科学研究科修了 1986年 構改局設計課農業土木専門官,設計審査班長 1989年 農工研土木材料研究室長、土木地質研究室長 1998年 京都大学博士(農学) 現在に至る



Î

# 1964年 秋田県に生まれる 1986年 岩手大学農学部農業土木学科卒業 農林水産省入省 1999年 農業工学研究所造構部 現在に至る

## 地域環境工学シリーズ 4

| 清らかな水のためのサイエンス<br>- *質環境学-                                                                                                                                                  | <sup>地域環境エ学シリーズ4</sup><br>清らかな水のためのサイエンス<br><b>一水質環境学一</b>                                                                                                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (社)農業土木学会発行                                                                                                                                                                 | <ul> <li>編集委員会(五十音順)</li> <li>委員長 田渕 俊雄(日本学術会議会員)</li> <li>委員 安楽 敏 (農林水産省構造改善局建設部設計課)</li> <li> <ul> <li>中曽根英雄(茨城大学農学部)</li> <li> <ul> <li>柚山 義人(農業工学研究所農村整備部)</li> </ul> </li> </ul></li></ul> |  |  |  |
| A 5判約220ページ定価3,200円(内税・送料学会負担)<br>会員特価2,800円(内税・送料学会負担)<br>〔会員特価は,個人会員による前金購入の場合のみ適用されます。〕 中込先 〒105-0004 港区新橋 5-34-4<br>(社)農業土本学会 担当:馬目・斉藤<br>の3-3436-3418 FAX 03-3435-8494 |                                                                                                                                                                                                 |  |  |  |